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Solutions of the radial Schriidinger equation containing a polarisation potential r-4 
are expanded in a form appropriate for large values of r. These expansions of the Mathieu 
Functions are used in association with the numerical solution of the S&r&linger 
equation, to impose the asymptotic boundary condition in the case of bound states, and 
to extract phase shifts in the case of scattering states. 

1. INTRODUCTION 

The radial Schriidinger equation containing a potential V(r) proportional to 
fr-4 has been studied quite extensively. In the case of a repulsive potential ( +r4) 
the physical interest arises because the nucleon-nucleon interaction is thought to 
have a similar, highly singular form [l-3]. An attractive potential (-r-3 is the 
form of the interaction between an ion and a neutral atom or molecule at moderate 
to large distances. Studies of this ion-neutral interaction have been concerned with 
predicting the contribution to the phase shifts caused by the polarisation potential 
-r-4 [4-Q 

In view of the physical interest it is appropriate to solve the repulsive problem 
throughout the whole range of r(0 to co), whereas in the attractive (ion-neutral) case 
the physical potential deviates from the polarisation form (-r-4) at small values of 
r. Thus in this latter case it is only appropriate to express the radial wavefunction 
as a Mathieu function at moderate to large values of r, which is the domain of 
validity of the expansions presented in this paper. Mathematically these asymp- 
totic expansions are applicable to either the attractive or repulsive potentials for 
large values of the argument. 

2. THE COMPUTATIONAL PROBLEM 

The problem of concern in this paper is the solution of the radial Schrodinger 
equation containing a known potential V(r), which becomes a polarization poten- 
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tial -z20r/(2ra) within the required precision for r > rD,,l ; the value rp,,l increases 
with the required precision of the potential. For the ion-neutral interaction 01 is 
the static electric dipole polarizability of the neutral atom or molecule, and z is 
the charge on the ion in atomic units [5, 61. For r < rpOl the potential V(r) will 
not generally have a simple analytical form, so that the Schrgdinger equation must 
be solved numerically [9]. 

A problem in numerical practice is the choice of the upper limit on the range of 
integration (rmax), since in principle this range extends up to r = co. One might 
choose this upper limit to be sufficiently large for V(rmax) to be equal to its constant, 
asymptotic value within the precision of the calculation. If rmax is chosen in this 
way, then it may be very large (hundreds of atomic units), so that a large amount of 
computer time is incurred, and accumulated rounding errors may limit the precision 
of the numerical solution [lo]. 

In cases such as the ion-neutral interaction in which V(r) becomes a polarization 
potential as r becomes large (at r = rpol within the required precision), rmax can be 
chosen to be any value greater than rpol . The SchrGdinger equation is integrated 
numerically between r = 0 and r = r maX, and the numerical solution is matched 
to the general semi-analytical solution of the radial Schr6dinger equation con- 
taining the polarization potential, which is a Mathieu function [ 11, 12, 13, 
Chap. 201. 

Thus one needs a semianalytical form for these Mathieu functions suitable for 
evaluation at moderate to large values of r. The purpose of this paper is to present 
the expansions of these Mathieu functions which we have derived, and to show 
how they may be matched to the numerical solution obtained in the range 
0 < r < Ymax . This matching procedure imposes the appropriate upper boundary 
condition on the wave function in the case of bound states, and determines phase 
shifts in the case of scattering states. 

The expansions of the Mathieu functions used in previous work [l-12] are not 
particularly suitable for the application considered here, because they involve 
series in both integral and inverse powers of r (rn : -co < n < +a), and the 
determination of a characteristic exponent. This is an eigenvalue problem, so that 
it necessarily leads to iterative numerical procedures. The expansions presented 
below contain the asymptotic form of the wave function as a factor, and are based 
upon series in r-l, so that the characteristic exponent is not needed. These asympto- 
tic expansions of the Mathieu functions are related to the large-argument expan- 
sions of the spherical Bessel functions [13, p. 437, Sect. 10.1.8 and 10.1.91 in the 
case of zero polarizability (a = 0). They are evaluated by noniterative summation 
of a sufficient number of terms of the series, until the next term to be added is 
smaller than the tolerable error in the sum. 
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3. THE FORM OF THE SOLUTION 

The radial Schriidinger equation is usually simplified by removing a factor of 
r-l from the wave function #(r) [14, p. 2661; #(r) = y(r)/r. This removes the first 
derivative term from the equation. The equation for u(r) has the form: 

d2y/dr2 + [2,u(E - V,) + pa/r4 - 1(1+ l)/r2] y = 0. (1) 

This form implies the use of atomic units [15, p. xv]. y is the reduced mass of the 
two interacting particles, V, is the asymptotic limit of the potential, and I is the 
angular momentum quantum number. 

For scattering states (E > V,) it is convenient to define a real parameter 

k = [2/e@ - V#2. CW 

For bound states (E < Vm) this parameter is defined by 

k = [2/4 r’, - ~)]1/2, (2b) 

so that k is real and positive in both cases. For both bound and scattering states 
simplification then proceeds by transformation to an independent variable z = kr, 
and by the introduction of a real parameter 0 = pak2. Thus Eq. (1) is reduced to 
one containing only two parameters (0 and f): 

d2fldz2 + [8/z* - Z(1 + 1)/z2 f l] f = 0, (3 It) 

wheref(z) = y(r). The upper (+) sign is for the case of scattering states, and the 
lower (-) sign for that of bound states. 

The asymptotic form off(z) as z -+ co is obtained by solving the equation: 

cPfJdz2 5 fm = 0. (4) 

For scattering states this produces fm N exp(fiz), and for bound states 
fm = exp( 43). 

We note in passing that the form of f(z) for small values of z is obtained by 
solving (3) retaining only the term 19/z”. The form is the same for bound and scat- 
tering states, f N exp( fi01/2/z), which exhibits the increasingly oscillatory be- 
havior of the Mathieu function as z + 0 [4]. Since the real potential V(r) is not 
of the polarization form -r-4 at small values of r, it is not appropriate to introduce 
this factor into f(z). 

The physically correct asymptotic form of f(z) for bound states is exp(-z); 
eliminating exp(+z) in effect fixes one of the arbitrary constants in the general 
solution of Eq. (3-). For scattering states it is sufficient to consider only one of 
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the forms, exp(iz) or exp( -iz), in order to obtain the general solution, because the 
real and imaginary parts of the other factor of f(z) (g(x) below) are linearly 
independent [ll, p. 2221. Arbitrarily we choose exp(--iz) as the asymptotic factor 
off(z). 

4. SERIES EXPANSION OFT 

The series expansions for bound states and for scattering states, may be developed 
together by transforming to the independent variable x = iz in the case of scat- 
tering states, and by simply writing x = z for bound states. The transformation 
x = iz is actually necessary in order to develop the series for f(z) [ll, p, 221, 
Sect. 11.201. Thus f(z) is written as a product: 

f(z) = exp(--xl g(x). (5) 

The equation determining g(x) is obtained by substituting (5) into (3 -J-): 

d2g/dx2 - 2dg/dx - [1(f + 1)/x2 -j= e/x”] g = 0, (6 41) 

where as in (3 i-) the upper (+) sign refers to scattering states (x = iz) and the 
lower (-) sign refers to bound states (x = z). 

The factor g(x) is expanded as a series in inverse powers of x: 

g(x) = f Cj/Xj, 
j=O 

where we have anticipated that the indicial index is zero. Substitution of (7) into 
(6f) followed by the usual series solution procedure of setting the coefficient of 
each power of x to zero [16, Sect. 2.111, yields the equations: 

Co = an arbitrary constant 
2 c, = Z(f + 1) co 
4 c, = [f(Z + 1) - 21 c, 
2j Cj = [Z(Z + 1) - j(j - l)] Cj-1 & OCj-2 

j = 3, 4, 5 ,... . 

(8 43 

The upper sign (+) refers to scattering states, and the lower (-) sign to bound 
states. 

It is apparent from (8 *) that the sequence of coefficients C, diverges asj becomes 
large, so that the higher order terms of (7) involve division of one large number 
(Cj) by another large number (xj). In our experience [17] this leads to the numerical 
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problem that C, and xi go outside the range of the floating point arithmetic of the 
computer being used, even though the quotient Cjlx’ remains within range. 

This numerical problem is circumvented by re-expressing g(x) as a simple sum 
of terms, so that the coefficients Ci are never explicitly calculated. For both bound 
and scattering states a term Tj is defined by: 

Ti = Cj/Zjp (9 

where we have transformed back to the real variable z in the case of scattering 
states. For bound states g(z = x) is given by: 

g(z) = f’ Tj . 
j=O 

For scattering states the real and imaginary parts of the complex conjugate of g(x) 
are denoted by P(z) and Q(Z); 

g(x = iz) = P(z) - iQ(z), 

so that P and Q are sums of the real terms Tj : 

(11) 

P = f (-1)j T,j ; Q = f (-1)j Tzj+l a (12) 
i=O j=O 

The recurrence relations between the T, for both bound and scattering states are 
obtained by substituting (9) (i.e., Cj = Tjzj) into (8f): 

To = Co = an arbitrary constant 

2zT, = I(1 + 1) To 

4zT, = [I(1 + 1) - 21 Tl 
(13) 

’ 2jzT, = [I(/ + 1) - j(j - l)] Tjbl f dTj-Jz2 

where as in (3 j-t) and (6 -J), the upper (+) sign refers to scattering states, and the 
lower (-) sign to bound states. In practice the infinite summations in (10) and (12) 
are terminated when g(x) has become constant to the required precision [17]. This 
is equivalent to the requirement that the next term to be added is smaller than the 
tolerable error in the sum. This convergence criterion is sufficient to guarantee the 
required accuracy of the evaluated function, even though the asymptotic series 
ultimately diverges [24, Chap. 211. Since this convergence requirement can only 
be met for sufficiently large values of z = kr, nonconvergence to the required 
accuracy was monitored by terminating the summation after a arbitrarily preset 
number of terms (in practice 30 terms). 
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5. BOUND STATE MATCHING PROCEDURE 

Typical methods of numerical integration of the radial Schrodinger equation 
[9, 18-201 involve a finite-difference relation between three adjacent values of 
4’(r) ; ykmax - h), y(rmaa), and y(rmaX + h), where h is the step length of the finite- 
difference grid of points. 

The matching procedure is very simple. C, is given an arbitrary value to fix the 
normalization of the wavefunction; in practice a small number is appropriate 
since the relative magnitude of the wave function is small at the large distance 
rmax . The two values y(rma?t) and Y(rmax + h) are evaluated by Eqs. (5), (10). 
and (13). These two values of y are then used in the finite-difference relation to 
generate Y(rmax - h) to begin the process of inward integration [9], In this way 
the upper boundary condition on y(r) is automatically imposed on the generated 
numerical solution. 

6. EXTRACTION OF SCATTERING STATE PHASE SHIFTS 

The real and imaginary parts of the complex conjugate of f(z) are P cos z - Q 
sin z and P sin z + Q cos z. Thus the general solution of (3+) is: 

.f,(z) = y[P cos z - Q sin z] + p[P sin z + Q cos z] (14) 

where y and /3 are arbitrary constants. 
For scattering states, numerical integration of the radial Schrtidinger equation 

can be started ar r = 0 and carried outwards to r = rmax [18, 211. P(z) and Q(Z) 
are calculated with C,, = 1 (arbitrary normalization) for z = k rmax and z = 
k(rmax - h). The constants y and /3 are then determined by equatingf,(z) (Eq. (14)) 
to the numerical solution f(z) at r = rmax and r = rmax - h. 

Since P + 1 and Q -+ 0 as r + co, the asymptotic form off,(z) is 

f,(z) --f y cos z + j3 sin z. (15) 

In partial wave analysis [22, p. 291 the radial wavefunction has the asymptotic 
form 

y N sin(z - (17r/2) + S,) (16) 

where 6, is the scattering phase shift. Equations (15) and (16) yield the relation 
determing a1 : 

tan@, - @/T/2)) = r//3. (17) 

This method of determining phase shifts has been applied to the scattering of 
electrons, protons, and positrons, from hydrogen atoms [17, 231. We have also 
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compared phase shifts obtained by the method presented in this paper with the 
“polarization phase shifts pL” as defined by Holzwarth [4]. For large values of the 
angular momentum I, when pl dominates the total scattering phase shift, there is 
excellent agreement between the two methods. 
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